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Abstract. In this paper we present FEgoLifter, a novel system that can
automatically segment scenes captured from egocentric sensors into a
complete decomposition of individual 3D objects. The system is specifi-
cally designed for egocentric data where scenes contain hundreds of ob-
jects captured from natural (non-scanning) motion. EgoLifter adopts 3D
Gaussians as the underlying representation of 3D scenes and objects and
uses segmentation masks from the Segment Anything Model (SAM) as
weak supervision to learn flexible and promptable definitions of object
instances free of any specific object taxonomy. To handle the challenge of
dynamic objects in ego-centric videos, we design a transient prediction
module that learns to filter out dynamic objects in the 3D reconstruc-
tion. The result is a fully automatic pipeline that is able to reconstruct
3D object instances as collections of 3D Gaussians that collectively com-
pose the entire scene. We created a new benchmark on the Aria Digital
Twin dataset that quantitatively demonstrates its state-of-the-art per-
formance in open-world 3D segmentation from natural egocentric input.
We run EgoLifter on various egocentric activity datasets which shows
the promise of the method for 3D egocentric perception at scale.

Keywords: Egocentric Perception - Open-world Segmentation - 3D Re-
construction

1 Introduction

The rise of personal wearable devices has led to the increased importance of
egocentric machine perception algorithms capable of understanding the physical
3D world around the user. Egocentric videos directly reflect the way humans see
the world and contain important information about the physical surroundings
and how the human user interacts with them. The specific characteristics of ego-
centric motion, however, present challenges for 3D computer vision and machine
perception algorithms. Unlike datasets captured with deliberate "scanning" mo-
tions, egocentric videos are not guaranteed to provide complete coverage of the
scene. This makes reconstruction challenging due to limited or missing multi-
view observations.

* Work done during internship at Reality Labs, Meta.
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Fig. 1: EgoLifter solves 3D reconstruction and open-world segmentation simultane-
ously from egocentric videos. EgoLifter augments 3D Gaussian Splatting [16] with
instance features and lifts open-world 2D segmentation by contrastive learning, where
3D Gaussians belong to the same objects are learned to have similar features. In this
way, EgoLifter solves the multi-view mask association problem and establishes a consis-
tent 3D representation that can be decomposed into object instances. EgoLifter enables
multiple downstream applications including detection, segmentation, 3D object extrac-
tion and scene editing. See supplementary material for animated visualizations.

The specific content found in egocentric videos also presents challenges to
conventional reconstruction and perception algorithms. An average adult inter-
acts with hundreds of different objects many thousands of times per day [4].
Egocentric videos capturing this frequent human-object interaction thus contain
a huge amount of dynamic motion with challenging occlusions. A system capable
of providing useful scene understanding from egocentric data must therefore be
able to recognize hundreds of different objects while being robust to sparse and
rapid dynamics.

To tackle the above challenges, we propose EgoLifter, a novel egocentric 3D
perception algorithm that simultaneously solves reconstruction and open-world
3D instance segmentation from egocentric videos. We represent the geometry
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of the scene using 3D Gaussians [16] that are trained to minimize photometric
reconstruction of the input images. To learn a flexible decomposition of objects
that make up the scene we leverage SAM [20] for its strong understanding of
objects in 2D and lift these object priors into 3D using contrastive learning.
Specifically, 3D Gaussians are augmented with additional N-channel feature em-
beddings that are rasterized into feature images. These features are then learned
to encode the object segmentation information by contrastive lifting [1]. This
technique allows us to learn a flexible embedding with useful object priors that
can be used for several downstream tasks.

To handle the difficulties brought by the dynamic objects in egocentric videos,
we design EgoLifter to focus on reconstructing the static part of the 3D scene.
EgoLifter learns a transient prediction network to filter out the dynamic objects
from the reconstruction process. This network does not need extra supervision
and is optimized together with 3D Gaussian Splatting using solely the photo-
metric reconstruction losses. We show that the transient prediction module not
only helps with photorealistic 3D reconstruction but also results in cleaner lifted
features and better segmentation performance.

EgoLifter is able to reconstruct a 3D scene while decomposing it into 3D
object instances without the need for any human annotation. The method is
evaluated on several egocentric video datasets. The experiments demonstrate
strong 3D reconstruction and open-world segmentation results. We also showcase
several qualitative applications including 3D object extraction and scene editing.
The contributions of this paper can be summarized as follows:

— We demonstrate EgoLifter, the first system that can enable open-world 3D
understanding from natural dynamic egocentric videos.

— By lifting output from recent image foundation models to 3D Gaussian Splat-
ting, FgoLifter achieve strong open-world 3D instance segmentation perfor-
mance without the need for expensive data annotation or extra training.

— We propose a transient prediction network, which filters out transient ob-
jects from the 3D reconstruction results. By doing so, we achieve improved
performance on both reconstruction and segmentation of static objects.

— We set up the first benchmark of dynamic egocentric video data and quanti-
tatively demonstrate the leading performance of EgoLifter. On several large-
scale egocentric video datasets, FgoLifter showcases the ability to decompose
a 3D scene into a set of 3D object instances, which opens up promising di-
rections for egocentric video understanding in AR/VR applications.

2 Related Work

2.1 3D Gaussian Models

3D Gaussian Splatting (3DGS) [16] has emerged as a powerful algorithm for
novel view synthesis by 3D volumetric neural rendering. It has shown promis-
ing performance in many applications, like 3D content generation [3, 47, 58],
SLAM [15,28, 53] and autonomous driving [54, 60]. Recent work extend 3DGS
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to dynamic scene reconstruction [6, 25,52, 55, 56]. The pioneering work from
Luiten et al. [25] first learns a static 3DGS using the multi-view observations
at the initial timestep and then updates it by the observations at the follow-
ing timesteps. Later work [52,56] reconstructs dynamic scenes by deforming a
canonical 3DGS using a time-conditioned deformation network. Another line of
work [6,55] extends 3D Gaussians to 4D, with an additional variance dimension
in time. While they show promising results in dynamic 3D reconstruction, they
typically require training videos from multiple static cameras. However, in ego-
centric perception, there are only one or few cameras with a narrow baseline. As
we show in the experiments, dynamic 3DGS struggles to track dynamic objects
and results in floaters that harm instance segmentation feature learning.

2.2 Open-world 3D Segmentation

Recent research on open-world 3D segmentation [8, 13,14, 17,21, 22,29, 36, 42,
43,48, 50] has focused on lifting outputs from 2D open-world models - large,
powerful models that are trained on Internet-scale datasets and can general-
ize to a wide range of concepts [20, 33, 38, 40]. These approaches transfer the
ability of powerful 2D models to 3D, require no training on 3D models, and
alleviate the need for large-scale 3D datasets that are expensive to collect. Early
work [14,17,36] lifts dense 2D feature maps to 3D representations by multi-view
feature fusion, where each position in 3D is associated with a feature vector.
This allows queries in fine granularity over 3D space, but it also incurs high
memory usage. Other work [11,24,46] builds object-decomposed 3D maps using
2D open-world detection or segmentation models [20,23], where each 3D object
is reconstructed separately and has a single feature vector. This approach pro-
vides structured 3D scene understanding in the form of object maps or scene
graphs but the scene decomposition is predefined and the granularity does not
vary according to the query at inference time. Recently, another work [1] lifts
2D instance segmentation to 3D by contrastive learning. It augments NeRF [31]
with an extra feature map output and optimizes it such that pixels belonging to
the same 2D segmentation mask are pulled closer and otherwise pushed apart.
In this way, multi-view association of 2D segmentation is solved in an implicit
manner and the resulting feature map allows instance segmentation by either
user queries or clustering algorithms.

Concurrent Work. We briefly review several recent and unpublished pre-
prints that further explore topics in this direction using techniques similar to
ours. Concurrently, OmniSeg3D [59] and GARField [18] follow the idea of [1],
and focus on learning 3D hierarchical segmentation. They both take advantage
of the multi-scale outputs from SAM [20] and incorporate the scales into the
lifted features. GaussianGrouping [57] also approaches the open-world 3D seg-
mentation problem but they rely on a 2D video object tracker for multi-view
association instead of directly using 2D segmentation via contrastive learning.
Similar to our improvement on 3DGS, FMGS [61] and LangSplat [37] also aug-
ment 3DGS with feature rendering. They learn to embed the dense features from
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foundation models [34,38] into 3DGS such that the 3D scenes can be segmented
by language queries. While the concurrent work collectively also achieves 3D
reconstruction with the open-world segmentation ability, EgoLifter is the first
to explicitly handle the dynamic objects that are commonly present in the real-
world and especially in egocentric videos. We demonstrate this is a challenge in
real-world scenarios and show improvements on it brought by EgoLifter.

2.3 3D Reconstruction from Egocentric Videos

NeuralDiff [51] first approached the problem of training an egocentric radiance
field reconstruction by decomposing NeRF into three branches, which capture
ego actor, dynamic objects, and static background respectively as inductive bi-
ases. EPIC-Fields [49] propose an augmented benchmark using 3D reconstruc-
tion by augmenting the EPIC-Kitchen [5] dataset using neural reconstruction.
They also provide comprehensive reconstruction evaluations of several baseline
methods [9,27,51]. Recently, two datasets for egocentric perception, Aria Digi-
tal Twin (ADT) dataset [35] and Aria Everyday Activities (AEA) Dataset [26],
have been released. Collected by Project Aria devices [7], both datasets feature
egocentric video sequences with human actions and contain multimodal data
streams and high-quality 3D information. ADT also provides extensive ground
truth annotations using a motion capture system. Preliminary studies on egocen-
tric 3D reconstruction have been conducted on these new datasets [26,45] and
demonstrate the challenges posed by dynamic motion. In contrast, this paper
tackles the challenges in egocentric 3D reconstruction and proposes to filter out
transient objects in the videos. Compared to all existing work, we are the first
work that holistically tackles the challenges in reconstruction and open-world
scene understanding, and set up the quantitative benchmark to systematically
evaluate performance in egocentric videos.

3 Method

3.1 3D Gaussian Splatting with Feature Rendering

3D Gaussian Splatting (3DGS) [16] has shown state-of-the-art results in 3D
reconstruction and novel view synthesis. However, the original design only re-
constructs the color radiance in RGB space and is not able to capture the rich
semantic information in a 3D scene. In EgoLifter, we augment 3DGS to also
render a feature map of arbitrary dimension in a differentiable manner, which
enables us to encode high-dimensional features in the learned 3D scenes and lift
segmentation from 2D to 3D. These additional feature channels are used to learn
object instance semantics in addition to photometric reconstruction.

Formally, 3DGS represents a 3D scene by a set of N colored 3D Gaussians
S ={06;li=1,---, N}, with location and shape represented by a center position
p: € R3, an anisotropic 3D covariance s; € R? and a rotation quaternion q; € R*.
The radiance of each 3D Gaussian is described by an opacity parameter «; € R
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Fig. 2: Naive 3D reconstruction from egocentric videos creates a lot of "floaters" in
the reconstruction and leads to blurry rendered images and erroneous instance features
(bottom right). EgoLifter tackles this problem using a transient prediction network,
which predicts a probability mask of transient objects in the image and guides the
reconstruction process. In this way, FgoLifter gets a much cleaner reconstruction of
the static background in both RGB and feature space (top right), which in turn leads
to better object decomposition of 3D scenes.

and a color vector ¢;, parameterized by spherical harmonics (SH) coefficients.
In EgoLifter, we additionally associate each 3D Gaussian with an extra feature
vector f € RY, and thus the optimizable parameter set for i-th Gaussian is
©; = {pi,si,qi, v, ¢, fi }.

To train 3DGS for 3D reconstruction, a set of M observations {I;,6,|j =
1,---, M} is used, where I is an RGB image and 6; is the corresponding camera
parameters. During the differentiable rendering process, all 3D Gaussians are
splatted onto the 2D image plane according to 6; and a-blended to get a rendered
image ij. Then the photometric loss is computed between the rendered image
ij and the corresponding ground truth RGB image I; as

Lrap(1, 1)) = Luse(l;, 1) = > |1[u] — f(I;[u)]3, (1)

ue?

where Lysg is the mean-squared-error (MSE) loss, 2 is set of all coordinates on
the image and I;[u] denotes the pixel value of I at coordinate u. f(-) is an image
formation model that applies special properties of the camera (e.g. vignetting,
radius of valid pixels) on the rendered image. By optimizing Lraop, the location,
shape, and color parameters of 3D Gaussians are updated to reconstruct the
geometry and appearance of the 3D scene. A density control mechanism is also
used to split or prune 3D Gaussians during the training process [16].

In EgoLifter, we also implement the differentiable feature rendering pipeline
similar to that of the RGB images, which renders to a 2D feature map F e
RAXWXd according to the camera information. During the training process, the



EgoLifter: Open-world 3D Segmentation for Egocentric Perception 7

feature vectors are supervised by segmentation output obtained from 2D images
and jointly optimized with the location and color parameters of each Gaussian.
We also include gradients of feature learning for the density control process in
learning 3DGS. More details may be found in the supplementary material.

3.2 Learning Instance Features by Contrastive Loss

Egocentric videos capture a huge number of different objects in everyday activi-
ties, and some of them may not exist in any 3D datasets for training. Therefore,
egocentric 3D perception requires an ability to generalize to unseen categories
(open-world) which we propose to achieve by lifting the output from 2D instance
segmentation models. The key insight is that 2D instance masks from images of
different views can be associated to form a consistent 3D object instance and that
this can be done together with the 3D reconstruction process. Recent work has
approached this problem using linear assignment [44], video object tracking [57],
and incremental matching [11,24,46].

To achieve open-world 3D segmentation, we use f as instance features to
capture the lifted segmentation and their similarity to indicate whether a set of
Gaussians should be considered as the same object instance. Inspired by Con-
trastive Lift [1], we adopt supervised contrastive learning, which pulls the ren-
dered features belonging to the same mask closer and pushes those of different
masks further apart. Formally, given a training image I;, we use a 2D segmen-
tation model to extract a set of instance masks M; = {Mﬂk =1,---,m;} from

I;. The feature map Fj at the corresponding camera pose 6; is then rendered,
and the contrastive loss is computed over a set of pixel coordinates U, for which
we use a uniformly sampled set of pixels Y C {2 due to GPU memory constraint.
The contrastive loss is formulated as

> e+ exp(sim(F;[u], Fj[u']; )
lo ~ , 2
\U| 1;4 % Zu reu exp(SIm(F] [u]vFj [u/];y) ®

where U™ is the set of pixels that belong to the same instance mask as u and
F, jlu] denotes the feature vector of the F at coordinate u. We use a Gaussian
RBF kernel as the similarity function, i.e. sim(f1, f2;7) = exp(—7||f1 — f2||3)-

In the contrastive loss, pixels on the same instance mask are considered as
positive pairs and will have similar features during training. Note that since the
2D segmentation model does not output consistent object instance IDs across
different views, the contrastive loss is computed individually on each image. This
weak supervision allows the model to maintain a flexible definition of object in-
stances without hard assignments and is key to learning multi-view consistent
instance features for 3D Gaussians that enables flexible open-world 3D segmen-
tation.

Econtr (Fj7 M]) =

3.3 Transient Prediction for Egocentric 3D Reconstruction

Egocentric videos contain a lot of dynamic objects that cause many inconsis-
tencies among 3D views. As we show in Fig. 2, the original 3DGS algorithm
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on the egocentric videos results in many floaters and harms the results of both
reconstruction and feature learning. In EgoLifter, we propose to filter out tran-
sient phenomena in the egocentric 3D reconstruction, by predicting a transient
probability mask from the input image, which is used to guide the 3DGS recon-
struction process.

Specifically, we employ a transient prediction network G(I;), which takes
in the training image I; and outputs a probability mask P; € RT*W whose
value indicates the probability of each pixel being on a transient object. Then
P, is used to weigh the reconstruction loss during training, such that when a
pixel is considered transient, it is filtered out in reconstruction. Therefore the
reconstruction loss from Eq. (1) is adapted to

Lrepw(ly L, Pj) = Y (1= Pylu])[L[u] — Li[u][3, (3)
u€f?

where the pixels with lower transient probability will contribute more to the
reconstruction loss. As most of the objects in egocentric videos remain static,
we also apply an L-1 regularization loss on the predicted P; as L;ee(P;) =
ZpeP,- |p|. This regularization also helps avoid the trivial solution where P;
equals zero and all pixels are considered transient. The transient mask P is also
used to guide contrastive learning for lifting instance segmentation, where the
pixel set U is only sampled on pixels with the probability of being transient less
than a threshold 6. As shown in Fig. 2 and Fig. 3, this transient filtering also
helps learn cleaner instance features and thus better segmentation results.

In summary, the overall training loss on image I, is a weighted sum as

L= AlﬁRGB—w(Ijv ijv Pj) + )\Z»Ccontr(Fja MJ) + )\S'Creg(Pj)7 (4)

with A1, A2 and A3 as hyperparameters.

3.4 Open-world Segmentation

After training, instance features f capture the similarities among 3D Gaussians,
and can be used for open-world segmentation in two ways, query-based and
clustering-based. In query-based open-world segmentation, one or few clicks on
the object of interest are provided and a query feature vector is computed as
the averaged features rendered at these pixels. Then a set of 2D pixels or a set
of 3D Gaussians can be obtained by thresholding their Euclidean distances from
the query feature, from which a 2D segmentation mask or a 3D bounding box
can be estimated. In clustering-based segmentation, an HDBSCAN clustering
algorithm [30] is performed to assign 3D Guassians into different groups, which
gives a full decomposition of the 3D scene into a set of individual objects. In our
experiments, query-based segmentation is used for quantitative evaluation, and
clustering-based mainly for qualitative results.
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4 Experiments

Implementation. We use a U-Net [41] with the pretrained MobileNet-v3 [12]
backbone as the transient prediction network G. The input to G is first resized
to 224 x 224 and then we resize its output back to the original resolution using
bilinear interpolation. We use feature dimension d = 16, threshold § = 0.5,
temperature 7 = 0.01, and loss weights A\; = 1, Ay = 0.1 and A3 = 0.01.
The 3DGS is trained using the Adam optimizer [19] with the same setting and
the same density control schedule as in [16]. The transient prediction network
is optimized by another Adam optimizer with an initial learning rate of 1 x
107°. EgoLifter is agnostic to the specific 2D instance segmentation method,
and we use the Segment Anything Model (SAM) [20] for its remarkable instance
segmentation performance.

Datasets. We evaluate EgoLifter on the following egocentric datasets:

— Aria Digital Twin (ADT) [35] provides 3D ground truth for objects
paired with egocentric videos, which we used to evaluate EgoLifter quanti-
tatively. ADT dataset contains 200 egocentric video sequences of daily ac-
tivities, captured using Aria glasses. ADT also uses a high-quality simulator
and motion capture devices for extensive ground truth annotations, includ-
ing 3D object bounding boxes and 2D segmentation masks for all frames.
ADT does not contain an off-the-shelf setting for scene reconstruction or
open-world 3D segmentation. We create the evaluation benchmark using the
GT 2D masks and 3D bounding boxes by reprocessing the 3D annotations.
Note that only the RGB images are used during training, and for contrastive
learning, we used the masks obtained by SAM [20].

— Aria Everyday Activities (AEA) dataset [26] provides 143 egocentric
videos of various daily activities performed by multiple wearers in five differ-
ent indoor locations. Different from ADT, AEA contains more natural video
activity recordings but does not offer 3D annotations. For each location,
multiple sequences of different activities are captured at different times but
aligned in the same 3D coordinate space. Different frames or recordings may
observe the same local space at different time with various dynamic actions,
which represent significant challenges in reconstruction. We group all daily
videos in each location and run FgoLifter for each spatial environment. The
longest aggregated video in one location (Location 2) contains 2.3 hours of
video recording and a total of 170K RGB frames. The dataset demonstrates
our method can not only tackle diverse dynamic activities, but also produce
scene understanding at large scale in space and time.

— Ego-Exo04D [10] dataset is a large and diverse dataset containing over
one thousand hours of videos captured simultaneously by egocentric and
exocentric cameras. Ego-Exo4D videos capture humans performing a wide
range of activities. We qualitatively evaluate FEgoLifter on the egocentric
videos of Ego-Exo04D.

We use the same process for all Project Aria videos. Since Aria glasses use
fisheye cameras, we undistort the captured images first before training. We use
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Table 1: Quantitative evaluation of 2D instance segmentation (measured in mIoU)
and novel view synthesis (measured in PNSR) on the ADT dataset. The evaluations
are conducted on the frames in the novel subset of each scene.

Evaluation mloU (In-view) mloU (Cross-view) PSNR ‘
Object set Static Dynamic All Static Dynamic All Static Dynamic All
SAM [20] 5451 3277 50.69 - - - - - -
Gaussian Grouping [57]|35.68  30.76 34.81 |23.79 11.33 21.58 |21.29 14.99 19.97
EgoLifter-Static 55.67 39.61  52.86 |51.29 18.67 4549 |21.37 15.32 20.16
EgoLifter-Deform 54.23  38.62 51.49 |51.10 18.02 45.22 |21.16 15.39 19.93

EgoLifter (Ours) 58.15 37.74 54.57 |55.27 19.14 48.84 |22.14 14.37 20.28

the image formation function f(-) in Eq. (1) to capture the vignetting effect and
the radius of valid pixels, according to the specifications of the camera on Aria
glasses. We use high-frequency 6DoF trajectories to acquire RGB camera poses
and the semi-dense point clouds provided by each dataset through the Project
Aria Machine Perception Services (MPS).

Baselines. We compare EgoLifter to the following baselines.

— SAM [20] masks serve as input to EgoLifter. The comparison on segmenta-
tion between EgoLifter and SAM shows the benefits of multi-view fusion of
2D masks. As we will discuss in Sec. 4.1, SAM only allows prompts from the
same image (in-view query), while EgoLifter enables segmentation prompts
from different views (cross-view query) and 3D segmentation.

— Gaussian Grouping [57] also lifts the 2D segmentation masks into 3D
Gaussians. Instead of the contrastive loss, Gaussian Grouping uses a video
object tracker to associate the masks from different views and employs a
linear layer for identity classification. Gaussian Grouping does not handle
the dynamic objects in 3D scenes.

Ablations. We further provide two variants of EgoLifter in particular to study
the impact of reconstruction backbone.

— EgoLifter-Static disabled the transient prediction network. A vanilla static
3DGS [16] is learned to reconstruct the scene. We use the same method to
lift and segment 3D features.

— EgoLifter-Deform uses a dynamic variant of 3DGS [56] instead of the
transient prediction network to handle the dynamics in the scene. Similar
to [56], EgoLifter-Deform learns a canonical 3DGS and a network to predict
the location and shape of each canonical 3D Gaussian at different times-
tamps.

4.1 Benchmark Setup on ADT

We use the ADT dataset [35] for the quantitative evaluation, We use 16 video
sequences from ADT, and the frames of each sequence are split into seen and
novel subsets. The seen subset are used for training and validation, while the
novel subset contains a chunk of consecutive frames separate from the seen subset
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and is only used for testing. The evaluation on the novel subset reflects the
performance on novel views. The objects in each video sequence are also tagged
dynamic and static according to whether they move. Each model is trained and
evaluated on one video sequence separately. We evaluate the performance of the
query-based open-world 2D instance segmentation and 3D instance detection
tasks, as described in Sec. 3.4. For the Gaussian Grouping baseline [57], we
use their learned identity encoding for extracting query features and computing
similarity maps. Please refer to supplementary material for more details of the
evaluation settings, the exact sequence IDs and splits we used.

Open-world 2D instance segmentation. We adopt two settings in terms of
query sampling for 2D evaluation, namely in-view and cross-view. In both set-
tings, a similarity map is computed between the query feature and the rendered
feature image. The instance segmentation mask is then obtained by cutting off
the similarity map using a threshold that maximizes the IoU with respect to the
GT mask, which resembles the process of a human user adjusting the threshold
to get the desired object. In the in-view setting, the query feature is sampled
from one pixel on the rendered feature map in the same camera view. For a
fair comparison, SAM [20] in this setup takes in the rendered images from the
trained 3DGS and the same query pixel as the segmentation prompt. For each
prompt, SAM predicts multiple instance masks at different scales, from which
we also use the GT mask to pick one that maximizes the IoU for evaluation.
The cross-view setting follows the prompt propagation evaluation used in the
literature [2,32,39,59]. We randomly sample 5 pixels from the training images (in
the seen subset) on the object, and their average feature is used as the query for
segmentation on the novel subset. To summarize, the in-view setting evaluates
how well features group into objects after being rendered into a feature map,
and the cross-view setting evaluates how well the learned feature represents each
object instance in 3D and how they generalize to novel views.

Open-world 3D instance detection. For 3D evaluation, we use the same
query feature obtained in the above cross-view setting. The similarity map is
computed between the query feature and the learned 3D Gaussians, from which
a subset of 3D Gaussians are obtained by thresholding, and a 3D bounding
box is estimated based on their coordinates. The 3D detection performance is
evaluated by the IoU between the estimated and the GT 3D bounding boxes.
We also select the threshold that maximizes the IoU with the GT bounding box.
We only evaluate the 3D static objects in each scene.

Novel view synthesis. We evaluate the synthesized frames in the novel subset
using PSNR metric. We use "All" to indicate full-frame view synthesis. We also
separately evaluate the pixels on dynamic and static regions using the provided
the 2D ground truth dynamic motion mask.

4.2 Quantitative Results on ADT

The quantitative results are reported in Tab. 1 and 2. As shown in Tab. 1, Fgo-
Lifter consistently outperforms all other baselines and variants in the reconstruc-
tion and segmentation of static object instances in novel views. Since transient
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EgoLifter-Static EgoLifter (Ours)
Render Feature Trans. map Render Feature

Fig.3: RGB images and feature maps (colored by PCA) rendered by the Ego-
Lifter Static baseline and EgoLifter. The predlcted transient maps (Trans. map) from
EgoLifter are also visualized, with red color indicating a high probability of being tran-
sient. Note that the baseline puts ghostly floaters on the region of transient objects,
but EgoLifter filters them out and gives a cleaner reconstruction of both RGB images

and feature maps. Rows 1-3 are from ADT, rows 4-5 from AEA, and rows 6-7 from
Ego-Exo4D.
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Table 2: 3D instance detection performance for the static objects in the ADT dataset.

Method ‘ mloU
Gaussian Grouping [57] |7.48

EgoLifter-Static 21.10
EgoLifter-Deform 20.58
EgoLifter (Ours) 23.11

objects are deliberately filtered out during training, EgoLifter has slightly worse
performance on dynamic objects, However, the improvements on static objects
outweigh the drops on transient ones in egocentric videos and FEgoLifter still
achieves the best overall results in all settings. Similarly, this trend also holds in
3D, and EgoLifter has the best 3D detection performance as shown in Tab. 2.

4.3 Qualitative Results on Diverse Egocentric Datasets

In Fig. 3, we visualize the qualitative results on several egocentric datasets [10,
26, 35]. Please refer to supplementary material for the videos rendered by Ego-
Lifter with comparison to baselines. As shown in Fig. 3, without transient predic-
tion, EgoLifter-Static creates 3D Gaussians to overfit the dynamic observations
in some training views. However, since dynamic objects are not geometrically
consistent and may be at a different location in other views, these 3D Gaussians
become floaters that explain dynamics in a ghostly way, harming both the ren-
dering and segmentation quality. In contrast, EgoLifter correctly identifies the
dynamic objects in each image using transient prediction and filters them out in
the reconstruction. The resulting cleaner reconstruction leads to better results
in novel view synthesis and segmentation, as we have already seen quantitatively
in Sec. 4.2. We also compare the qualitative results with Gaussian Grouping [57]
in Fig. 4, from which we can see that Gaussian Grouping not only struggles
with floaters associated with transient objects but also has a less clean feature
map even on the static region. We hypothesize this is because our contrastive
loss helps learn more cohesive identity features than the classification loss used
in [57]. This also explains why EgoLifter-Static significantly outperforms Gaus-
sian Grouping in segmentation metrics as shown in Tab. 1 and 2.

4.4 3D Object Extraction and Scene Editing

Based on the features learned by FgoLifter, we can decompose a 3D scene into
individual 3D objects, by querying or clustering over the feature space. Each
extracted 3D object is represented by a set of 3D Gaussians which can be photo-
realistically rendered. In Fig. 5, we show the visualization of 3D objects extracted
from a scene in the ADT dataset. This can further enable scene editing appli-
cations by adding, removing, or transforming these objects over the 3D space.
In Fig. 1, we demonstrate one example of background recovery by removing all
segmented 3D objects from the table.
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GT Render from [57] Feature from [57] Our Render Our Feature

Fig. 4: Rendered images and feature maps (visualised in PCA colors) by Gaussian
Grouping [57] and EgoLifter (Ours).

Rendered Image and Features from EgolLifter Extracted 3D Objects

Fig. 5: Individual 3D object can be extracted by querying or clustering over the 3D
features from EgoLifter. Note object reconstructions are not perfect since each object
might be partial observable in the egocentric videos rather than scanned intentionally.

4.5 Limitations

We observe the transient prediction module may mix the regions that are hard
to reconstruct with transient objects. As shown in rows (4) and (5) of Fig. 3, the
transient prediction module predicts a high probability for pixels on the windows,
which have over-exposed pixels that are hard to be reconstructed from LDR
images. In this case, EgoLifter learns to filter them out to improve reconstruction
on that region. Besides, the performance of EgoLifter may also be dependent
on the underlying 2D segmentation model. EgoLifter is not able to segment an
object if the 2D model consistently fails on it.

5 Conclusion

We present EgoLifter, a novel algorithm that simultaneously solves the 3D re-
construction and open-world segmentation problem for in-the-wild egocentric
perception. By lifting the 2D segmentation into 3D Gaussian Splatting, Ego-
Lifter achieves strong open-world 2D /3D segmentation performance with no 3D
data annotation. To handle the rapid and sparse dynamics in egocentric videos,
we employ a transient prediction network to filter out transient objects and get
more accurate 3D reconstruction. EgoLifter is evaluated on several challenging
egocentric datasets and outperforms other existing baselines. The representa-
tions obtained by FEgoLifter can also be used for several downstream tasks like
3D object asset extraction and scene editing, showing great potential for personal
wearable devices and AR/VR applications.
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Potential Negative Impact: 3D object digitization for egocentric videos in
the wild may pose a risk to privacy considerations. Ownership of digital object
rights of physical objects is also a challenging and complex topic that will have
to be addressed as AR/VR becomes more ubiquitous.
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