
ZePHyR: Zero-shot Pose Hypothesis Rating

Brian Okorn*, Qiao Gu*, Martial Hebert and David Held

Abstract— Pose estimation is a basic module in many robot
manipulation pipelines. Estimating the pose of objects in the
environment can be useful for grasping, motion planning, or
manipulation. However, current state-of-the-art methods for
pose estimation either rely on large annotated training sets
or simulated data. Further, the long training times for these
methods prohibit quick interaction with novel objects. To
address these issues, we introduce a novel method for zero-
shot object pose estimation in clutter. Our approach uses a
hypothesis generation and scoring framework, with a focus
on learning a scoring function that generalizes to objects not
used for training. We achieve zero-shot generalization by rating
hypotheses as a function of unordered point differences. We
evaluate our method on challenging datasets with both textured
and untextured objects in cluttered scenes and demonstrate that
our method significantly outperforms previous methods on this
task. We also demonstrate how our system can be used by
quickly scanning and building a model of a novel object, which
can immediately be used by our method for pose estimation.
Our work allows users to estimate the pose of novel objects
without requiring any retraining. Additional information can
be found on our website https://bokorn.github.io/zephyr/

I. INTRODUCTION

6D pose describes the position and orientation of an
object, defined in a reference frame relative to a predefined
model of the object. An object’s 6D pose fully describes
the state of a static rigid object and, as such, is commonly
used as a representation for planning [1], [2]. A robot can
use an estimate of an object’s pose to perform complex
manipulation interactions with the object [3], [4], [5], [6].

Current state-of-the-art methods for object pose estimation
train a new model for each object they are being evaluated
on [7], [8], [9]. This requires a large amount of annotated
training data, either produced by capturing and annotating
large datasets or through rendering the object in synthetically
generated scenes. For example, the YCB-Video dataset [7]
contains 133,827 human-annotated images with roughly
25,000 images per object. Although this dataset has enabled
the training of powerful deep learning methods [7], [8], curat-
ing such a human-labeled dataset (including both capturing a
diverse dataset and labeling the data) for each new object that
a robot must interact with is cumbersome. Methods that rely
on purely simulated data [10], [11], [12] avoid this limitation
but must instead contend with the sim2real gap between
the synthetic data and real sensor observations. Improved
rendering [13] and domain randomization techniques [14]
have been suggested to alleviate this gap, but ensuring
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Fig. 1: Pose hypotheses scored using Zero-shot Pose Hy-
pothesis Rating on novel drill object, reconstructed at test
time. The highest scoring pose is rendered in color. Poses are
outlined in color corresponding to score, with highly rated
poses in red transitioning to lower ones in blue.

that the simulated data accurately represents the variations
observed in the real world continues to be an open problem.

Regardless of how this data is obtained, training new
networks has a time and space cost. This training can take
many hours, which prevents robots using such systems from
quickly being able to interact with new objects. Additionally,
new network weights are trained for each new object, which
presents a difficulty for memory-constrained robot systems.
These constraints do not scale well in cases where robots
need to interact with many different types of objects.

One approach to mitigate these issues is to use a non-
learned geometry-based method [15], [16]. These methods,
however, do not typically capture visual texture well, and
they rely on hard-coded, rather than learned, invariances,
which limits the potential accuracy of the system (based
on our experiments in Section V-A). A few recent learning-
based approaches have attempted to perform zero-shot object
pose estimation [17], [18] but these methods require instance
segmentation masks to be provided as input, which limits
their use in a “zero-shot” system, as such masks are typically
trained per-object.

We seek to remove these limitations by developing a novel
learning-based method for zero-shot object pose estimation
that can handle both textured and untextured objects in
cluttered scenes and does not require object masks as input.
Our method uses the paradigm of pose hypothesis generation
and evaluation: given a scene, a large number of candidate
poses are generated that are consistent with the observation.
The fitness of each hypothesis is then evaluated and the
best-fit candidate is selected. Such an approach requires
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the hypothesis rating function to give appropriate weight to
the features that most correlate with the correct pose. The
variation between sensor data and the object model, caused
by sensor noise or lighting changes, as well as partial occlu-
sions, can make designing this scoring function non-trivial.
Past approaches to hypothesis scoring have used voting over
hypotheses or feature matching [19], [20], [15]; in contrast,
this paper proposes a scoring function that learns to compare
the observed images and rendered model points. Our learned
scoring function demonstrates a significant improvement on
zero-shot object pose estimation over a wide set of objects
and environmental variations.

The key insight of our method is to use a learned scoring
function that compares the sensor observation to a sparse
rendering of each candidate pose hypothesis. This scoring
function receives as input an unordered set of point differ-
ences, shown in Fig. 2, which we show is crucial to perform
zero-shot generalization to novel objects not seen in the
training set. Our method is trained over a disparate set of
objects and then evaluated on novel objects not included in
the training set.

We demonstrate that our method works on objects in clut-
ter without requiring object masks as input, unlike past zero-
shot methods [18], [17]. Our method handles both untextured
objects as well as objects with significant visual texture, not
seen at training time. Our method thus achieves the goal of
zero-shot object pose estimation mentioned earlier:

• We require no new human annotations or large scale
synthetic data generation to interact with novel objects.

• We require no retraining for novel objects.
• Our method uses only a single set of network weights,

rather than requiring new weights for each unique
object, reducing the memory constraints.

We evaluate our method on YCB-Video and Occluded-
Linemod, two challenging pose estimation datasets. Our
method reduces the pose error by a large margin and achieves
state-of-the-art results over previous zero-shot pose estima-
tion methods.

II. RELATED WORK

A. Non-learned Zero-shot Pose Estimation

Zero-shot pose estimation is the task of estimating the
pose of objects not seen at training time. Non-learning
based approaches are inherently zero-shot, leveraging robust
features and the available object model at test time. Point
Pair Features (PPF) [16], [15], [21], [22], [21], [23] use pairs
of oriented points to generate geometrically consistent pose
hypotheses and select the best hypothesis using voting and
clustering. These are the top-performing zero-shot methods
on the BOP leader board [24], when averaged over all
datasets, but struggle to compete with deep learned methods
on the highly textured YCB dataset due to the methods being
exclusively based on depth.

B. Learned Zero-shot Object Pose Estimation

Several learned methods solve the zero-shot pose estima-
tion problem using class-based pose estimation [25], [26] as

opposed to instance-based pose estimation. These methods
learn a pose estimator capable of generalizing among objects
in the given class, but such methods are not intended to gen-
eralize to novel classes. While this is a step in the direction
of zero-shot pose estimation, it still requires training a new
network for each class.

Pose refinement methods like DeepIM [27] learn to es-
timate the residual pose between the observed data and a
rendered viewpoint and have shown to generalize well to
unseen classes of objects. These methods, however, require
the initial rendered pose to be relatively close to the obser-
vation to produce accurate results, and as such is primarily
used to refine a coarse pose prediction. Our method requires
no such close initialization.

A few recent zero-shot methods use a learned representa-
tion of the object in their pose estimation pipeline [28], [18],
[17]. While these methods have been shown to generalize
across objects, they require a bounding box for the target
object, which is obtained using an object-specific learned
detector (and hence not a zero-shot system) or the ground-
truth bounding box. This requirement is avoided in the
MOPED dataset [17], as there is only a single object in
the scene, which greatly simplifies the task of estimating
the object mask [29]. For the occluded LineMOD dataset,
ground truth object masks are used [17]. Our method does
not require such bounding boxes or masks as input, making
it truly zero-shot.

C. Pose Scoring

There has been some study of learned fitness functions.
Differentiable RANSAC (DSAC) [20] explores learning a
fully differentiable RANSAC algorithm. Specifically, they
study the use of a REINFORCE style loss for scoring
candidate hypotheses. We take inspiration from this work;
however, their method focuses on a different task of camera
localization rather than object pose estimation; as a result,
many important details of our method, such as the input
featurization and network architecture, are significantly dif-
ferent from their approach. Pose Proposal Critic [30] learns
to regress to the reprojection error between a rendered pose
and the observation. They numerically differentiate this error
function as a means of pose refinement. However, they only
evaluate this approach as a pose refinement technique, with
a close initial pose estimate; in contrast, our focus is on
evaluating a large set of pose hypotheses that span the entire
observation space.

III. METHOD

A. Overview

The primary objective of this work is zero-shot object
pose estimation in clutter. To achieve this, we train our pose
estimation method on one set of objects and then evaluate
on a set of novel objects, without requiring any re-training.
This differentiates our work from previous work that requires
real or synthetic training data of the test objects [7], [8]. Our
work additionally differentiates from other zero-shot pose
estimation work [17], [18], [16], in that it operates well
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Fig. 2: System Pipeline. Our method first projects the sampled model points M onto the observation I according to a pose
hypothesis hi. Then Di are extracted as the point-wise differences between the observation and the projected model points,
describing the alignment of the pose hypothesis at each projected point. A network takes in Di and regresses to a score si
for each pose hi which evaluates how well the pose matches the observation.

in cluttered scenes, requires no object masks as input, and
produces accurate poses for both textured and untextured
objects.

An overview of our method is shown in Figure 2. Given a
set of 6D pose hypotheses, we first project each hypothesis
into the scene. Our method learns to score each hypothesis
by comparing differences in the projected object model point
cloud to the RGB-D observation. For each projected model
point, we extract the color and geometry information from
both the model and the observation and compute the local
differences of the extracted information. This yields a set of
point-differences, one for each projected model point. Each
element in this set encodes the local alignment between the
model and the observation with respect to color and geome-
try. We adopt a point-based network [31], [32] to analyze this
unordered set of point-differences and regress to an overall
score for each pose hypothesis. Focusing on differences as
well as adopting a point-based neighborhood structure helps
us avoid overfitting to object-specific properties from the
training set and allows us to generalize to unseen objects
at test time.

In this work, our primary focus is the learned scoring
function and we use existing methods to generate our initial
pose hypothesis set. While many algorithms could be used
to generate these potential object pose hypotheses [20], [33],
[34], we use a combination of Point Pair Features [15] and
SIFT features [35].

B. Learned Scoring Function

The main goal of our method is to score pose hypotheses
by projecting them into the observed scene and learning to
compare their local geometric and color differences. Suppose
that we have a set of 6D pose hypotheses H = {hi}mi=1

that we wish to evaluate. We represent the object as a point
cloud M = {xj}nj=1, sampled from the provided object

mesh model, or obtained from a 3D reconstruction pipeline.
Each point contains both geometric (depth and normal) and
color information drawn from its local region on the object.
Similarly the observation image I contains geometric and
color values from the observation. To evaluate hypothesis hi,
we project each object point xj onto the observation’s image
plane, using the known camera parameters. This projection
gives a point at image coordinates yij with transformed
point values x̃ij (the point depth and normal vector are
transformed; the color of the projected point is unchanged).
For each pose hypothesis, the difference between the pro-
jected values, x̃ij , and their corresponding image values,
I(yij), is computed according to a simple distance function,
dij = f(x̃ij , I(yij)) (see Section III-D.2 for details).

The set Di = {dij}mj=1 represents an unordered set of
point differences for pose hypothesis hi, each of which
is associated with a given point xj in the model and a
location yij in the observation image. We train a deep
neural network gθ(Di) with parameters θ to analyze this
difference set and regress to a pose fitness score, si. While
one might assume that a simple hand-designed function
for g would be sufficient, in practice, however, occlusions,
lighting differences and other confounding factors make
such simple methods ineffective. Our learned function is
able to intelligently combine point differences on multiple
parts of the object to robustly estimate the most likely pose
hypothesis.

C. Loss Function

To train this hypothesis scoring function, we adopt the
probabilistic selection loss proposed by DSAC [20], as it
directly optimizes the expected pose error when hypotheses
are sampled according to the predicted scores. For each
pose hypotheses hi with corresponding true pose error
εi, we compute the expected pose error of sampling ac-



cording to the softmax distribution induced by si, L =∑m
i=1 softmax(si)εi.
In our experiment, εi is defined as the log of the average

point distance metric (ADD) for non-symmetric objects and
its symmetric analog (ADD-S) for symmetric objects [7].
Empirically, we find that using the log of this error better
dampens the effects of outliers. More discussion can be found
in Section III-D.2. At test time, the highest-scoring pose
hypothesis is selected. The full test time pipeline is described
in Algorithm 1.

Algorithm 1: Hypothesis Scoring Pose Estimation

Compute initial pose hypothesis set H = {hi}mi=1;
foreach hi in H do

Project all model points according to hi onto the
image plane to get projected model points x̃ij at
projected image coordinates yij ;

Get observation points I(yij);
Compute point differences di = f(x̃ij , I(yij));
Score point-differences si = gθ({dij}mj=1);

end
Return hypothesis hi∗ , where i∗ = argmaxi si;

D. Implementation details

1) Hypothesis Generation: We generate the initial hy-
potheses set using the commercially available Point Pair
Feature software, HALCON 20.05 Progress software [36],
which implements the PPF algorithm described in Drost et
al. [15]. For each observation, we use the top 100 pose
hypotheses generated by PPF. For detecting objects with high
visual texture (e.g. for all objects in YCB-V), we augment
these hypotheses using Dense SIFT feature matching. We
obtain pose hypotheses from these features by aligning the
surface normals and SIFT orientations of pairs of matched
SIFT features; aligning the SIFT orientations and normals
enables a single pair of matched SIFT features to define a
6D pose hypothesis.

2) Network Input: As input to the hypothesis scoring
function, we use very simple geometric and color information
for both the model and observation data. For each point
on the model, we compute its 3D location, surface normal,
and color in HSV space. When projecting each point into
the observation frame, we transform both the normals and
3D coordinates to compute the depth and normal with
respect to the camera. The color data is unaffected by the
projection. Similarly, we compute local surface normals from
the observation, and thus we obtain depth, normal and HSV
color information at each pixel of the observation image.

To create the network inputs dij , we compute the signed
difference between the projected and observed points for
both depth and color. For surface normals, we use the cosine
of the angle difference between the projected and observed
normals. Additionally, we concatenate the projected image
coordinates, yij , of the associated image point, normalized
to zero mean and unit variance, as an additional input
to the network, to provide some structural neighborhood
information.

3) Network Structure: Our network takes in the set of
point-differences Di = {dij}mj=1 and outputs a single
score, si, that estimates how well the pose hypothesis hi
matches the observation. Because Di is an unordered set
of point-differences, we use a network architecture designed
to handle unordered sets of points; specifically, we use
PointNet++ [32]. Our experiments show that the loose
neighborhood structure of this architecture enables zero-shot
generalization to unseen objects.

To define the spatial neighborhood for grouping points
in PointNet++’s point set abstraction layers, we use the
normalized image coordinates. We explore the effect of net-
works with different neighborhood structures in Section V-
C. See the supplementary material on our website for more
experimental details and hyperparameters.

IV. EXPERIMENTS

A. Datasets

We evaluated our method on two of the most popu-
lar datasets in the BOP Challenge [24], the YCB-Video
(YCB-V) dataset [7] and the LineMOD-Occlusion (LM-O)
dataset [9]. In these experiments, we follow the evaluation
protocol set up by the BOP Challenge, with the additional
constraint that our method is not trained on the objects it
is tested on. This allows us to test our ability to perform
zero-shot generalization to novel objects.

YCB-Video dataset (YCB-V) [7] contains 92 RGB-D
video sequences of 21 YCB objects [39] of varying shape
and texture, annotated with 6D poses. This a particularly
challenging dataset for object pose estimation due to its
varying lighting conditions, occlusions, and sensor noise.
We follow the dataset split in [7], and for the evaluation,
we adopt the BOP testing set [24], where 75 images with
higher-quality ground-truth poses from each of 12 test videos
are used. To demonstrate the generalization ability of our
method, one half of the objects are used for training, and
the other half are used for testing. To accommodate the
full dataset, a second network is trained with train and test
objects exchanged, such that each network only sees half
of the objects during training, and no network is trained on
the objects that it will be tested on. Note that we train our
network on the training (seen) objects in the YCB-V training
split and test on the testing (unseen) objects in the testing
split, so not a single test image or object is seen during
training. When evaluating on YCB-V, we use hypotheses
generated form both PPF and SIFT matching to handle the
high degree of visual texture. We also adopt a ICP refinement
step [40] for post-processing.

LineMOD-Occlusion dataset (LM-O) [9] adopted a sin-
gle scene from the test set of the larger LineMOD (LM)
dataset [41] and provides ground-truth 6D pose annotations
for 8 low-textured objects. For training, we used the PBR-
BlenderProc4BOP [42] training images provided by the
BOP challenge. This dataset contains photo-realistic syn-
thetic images of LM objects dropped onto a table, with
randomized background texture and object materials. Our
model is only trained on synthetic images of the 7 objects



Zero-Shot Methods Object Specific Methods

Drost [15] Vidal [16] Multipath [18] ZePHyR + CosyPose [37] Pix2Pose [38]Drost (Ours)
YCB-V 0.344 0.450 0.289 0.516 0.861 0.675
LM-O 0.527 0.581 0.217 0.598 0.714 0.588

TABLE I: AR scores for methods of zero-shot and object specific pose estimation on object pose datasets (higher is better).

that are in the LM dataset but not in the LM-O dataset; we
then evaluate on the LM-O objects, which were not seen
at training time. When evaluating on LM-O, we only use
hypotheses generated by PPF; we find that SIFT hypotheses
are ineffective on this dataset since the objects do not contain
much visual texture.

B. Metrics

As suggested by the BOP challenge, we report the average
recall (AR) scores as the average of the following three
average-recall pose error metrics: Visible Surface Discrep-
ancy (VSD), Maximum Symmetry-Aware Surface Distance
(MSSD), and Maximum Symmetry-Aware Projection Dis-
tance (MSPD). For a detailed formulation of each metric,
please refer to [24].

C. Baselines

We compare our method to both zero-shot and object-
specific pose estimation methods. As we are most concerned
with our performance as compared to other zero-shot meth-
ods, we compare to two variants of Point Pair Features,
Drost [15] and Vidal [16]. An implementation of Drost’s PPF
is used as the hypothesis generation algorithm in our work.
Vidal had until recently been the top-performing method in
the BOP challenge, and demonstrates the peak performance
of PPF-only systems (although their code is not available).
Other recent papers have proposed learning-based methods
for zero-shot pose estimation, namely Multipath Augmented
Autoencoders [18], which we compare against. While this
method has been shown to generalize to unseen objects, the
reported results that we include are a product of training a
single model on the test objects; further, their method utilizes
an object-specific detection network (also trained on the test
objects) [43]. In addition to the zero-shot baselines, we report
the current state of the art in object-specific methods as
CosyPose [37] and Pix2Pose [38]. Both of these methods
train a network on annotated instances of the test objects and
have weights specifically associated with each object. While
we are not attempting to match the performance of these
systems, we report their results to illustrate the still remaining
gap between zero-shot and object-specific methods.

V. RESULTS

A. Zero-shot Pose Estimation

In Table I, we find that our method outperforms all zero-
shot methods, significantly improving over our initial pose
hypotheses produced by Drost and outperforming the best
PPF-only solution in Vidal [16]. We see the largest improve-
ment on the YCB dataset, where PPF is unable to fully
resolve the pose of the geometrically symmetric but textually
asymmetric objects, seen in failure to match the cylindrical

objects in Figure 3. Our method is able to leverage both color
and geometry, selecting the most accurate pose hypothesis.
Additionally, we find our method to be comparable to the
object-specific results produced by Pix2Pose [38].

B. Evaluating Generalization

As we stated previously, in order to ensure our network is
not trained on the test objects we split the objects in YCB-V
into two halves, training a network on each set of objects. We
select via index parity, as it separates the dataset into splits
with roughly equal numbers of symmetric and asymmetric
objects, with “Object Set 1” and “Object Set 2” representing
the set of objects with even and odd object IDs respectively.
To evaluate how well our network generalizes, we compare
our results on unseen objects to the objects each network
was trained on. The full breakdown of each network’s scores
are shown in Table II. Although there is some performance
drop on unseen objects, the gap is relatively small, showing
the generalization abilities of our method. The “Zero-Shot”
column of shows the zero-shot performance of each model
on the objects it does not see during training.

Our method trained on
Tested on Set 1 Set 2 Zero-Shot

Object Set 1 0.624 0.543 0.543
Object Set 2 0.488 0.496 0.488
All Object 0.557 0.520 0.516

TABLE II: AR scores on YCB-V object subsets.

C. Neighborhood Structure

We explore the effects of different neighborhood structures
on the accuracy and generalization of our method. Our
method uses a PointNet++ [31] architecture that uses a
hierarchical neighborhood structure; we compare this to a
CNN architecture that uses a strict neighborhood structure
and a PointNet-based architecture [31] that uses a global
structure. For the CNN approach, we generate a sparse
difference image using the projected point differences before
passing it to a ResNet18 network [44]. Our PointNet++ ap-
proach uses normalized image coordinates for neighborhood
grouping. The PointNet approach contains the normalized
image coordinates but it does not perform explicit neigh-
borhood grouping. In Table III, we see that the loose local
neighborhood structure found in PointNet++ outperforms the
global structure of PointNet as well as the strict structure
used in image convolutions. This implies that some neigh-
borhood structure is important for evaluating these sparse
point differences, but a too strict neighborhood hampers both
performance and generalization.
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Fig. 3: Qualitative results on image from YCB-V dataset showing the improved accuracy of our method.

PointNet++ PointNet CNN
On YCB-V dataset (Hierarchical) (Global) (Strict)

Seen (Training) Objects 0.624 0.477 0.533
Unseen (Test) Objects 0.488 0.355 0.386

Total 0.557 0.416 0.459

TABLE III: Comparison of the performance of the different
neighborhood structure through network architectures.

D. Input Ablations

To determine the relative importance of each of our input
channels, we retrain our networks without each dimension.
We show results on YCB in Table IV, training on the
“Object Set 1” and testing on “Object Set 2”. Additionally,
this table shows the effects of concatenating observation
and model inputs (“Model without Diff”), as opposed to
computing their difference (as in our method). As can be
seen, using concatenation instead of differencing gives little
change in performance for seen objects, whereas it gives
worse performance for unseen objects. Unsurprisingly, the
color information has the greatest effect on the accuracy of
our system, as it is the most orthogonal to the information
used by our PPF hypotheses.

Model without
Color Depth Normal Coords Diff

Unseen Objects -18% -15% -7.1% -8.9% -6.3%(Zero-shot)
Seen Objects -24% -4.2% 0.8% 1.1% 2.1%(Training)

TABLE IV: Percent change in AR scores on YCB Video
dataset caused by removal of each input to our method.
E. Timing analysis

We analyze the inference speed of our method in Ta-
ble V. We separate our method into 5 stages, including
generating pose hypotheses from SIFT feature matching
(“SIFT”), generating pose hypotheses from PPF (“PPF”),
computing, transforming and comparing the observation and
model values for all hypotheses (“Projection”) and inference
with our scoring network (“Scoring”). Note that we only
use 100 PPF hypotheses for LM-O, whereas we use an
additional 1000 SIFT hypotheses for YCB-V. We found
that the LM-O dataset required more accurate initial pose
hypotheses, requiring significantly more processing time.
To compensate for this, we evaluate the time-performance
trade-off of different sets of PPF parameters on the LM-
O dataset, shown in blue on Figure 4. Since the LM-O
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Fig. 4: Speed accuracy analysis of our method (blue) over
various PPF hypothesis generation hyperparameters on LM-
O. Base PPF accuracy shown in orange.

dataset is challenging due to strong occlusions and limited
scales of objects in the scene, PPF methods [15], [16] need
a high sampling rate to produce reasonable pose estimates.
Therefore, increased speed comes at the cost of performance,
but our method consistently improves the accuracy of the
initial hypotheses, shown in red, at all stages of the curve.

SIFT PPF Projection Scoring Total
YCB-V 0.142 0.291 0.051 0.135 0.619
LM-O 0 2.900 0.014 0.034 2.949

TABLE V: Test time spent (sec) in each stage of our pipeline.
F. Reconstructed Model Results

To show the effectiveness of our method in robotic sce-
narios, we test our pipeline on newly generated object model
reconstructions. Using fiducial markers [45] and TSDF based
surface reconstruction [46], we build textured mesh model
of a novel drill object. As shown in Figure 1, we are able
to estimate the pose of the target object while in human
hands and while being manipulated by the robot; because
our method is zero-shot, we do not require any retraining to
estimate the pose of new objects such as this one.

VI. CONCLUSION

We propose a method for zero-shot object pose estimation,
focusing on pose hypothesis scoring. By extracting point
differences between the projected object points and the
observation and imposing a loose neighborhood structure on
these points, we learn a pose scoring function that generalizes
well to novel objects. On the challenging YCB-Video and
LineMOD-Occlusion datasets, our method achieves state-of-
the-art performance for zero-shot object pose estimation in
clutter, evaluated on both textured and untextured objects. We
hope that our method paves the way for roboticists to obtain
accurate pose estimates for novel objects without needing
additional training or data annotation.
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